5月21日下午,美国乔治理工大学教授、博士生导师潘荣华教授,中山大学数学学院教授、博士生导师、广东省数学会理事长、中国数学会常务理事姚正安教授以及中山大学数学学院教授、博士生导师、逸仙学院副院长、广东省数学会秘书长王其如教授应我院邀请,在霞山校区第一会议室分别作了题为“Modeling and Analysis on Rayleigh-Taylor Instability”、“函数的连续性、可微性、自相似性与图像处理和计算机安全”、“Traveling wave solutions for a delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies”的学术报告。我院陈入云教授主持报告会,数学学科教师以及部分研究生聆听了报告。
潘荣华教授风趣幽默地讲解在物理学中当且仅当对流不存在时,可压缩流体在均匀重力作用下的稳态是稳定的。对于非等熵流动,该稳定性判据为熵在重力方向上的单调性。
姚正安教授以深入浅出的方法介绍了函数的连续性、可微性,并且举出了一些处处连续但处处不可微的例子以及仅Hölder连续但不可微的例子。姚教授列举了自相似性的方法以及关于偏微分方程的分数阶应用和在图像处理和计算机安全方面的应用。
王其如教授介绍了一类具有输入项和标准(一般)发生率的时滞扩散SIR模型的行波解。王教授首先介绍了行波解的研究现状,然后详细的讲解了行波解的存在性、渐近性质、不存在性。最后,介绍了具有一般发生率系统的行波解。
报告结束后,老师们与潘荣华教授、姚正安教授、王其如教授进行了积极的沟通交流。本次报告会拓宽了我校师生的学术视野,为师生的科学研究提供了宝贵经验及指导,参会的师生都表示收获颇丰。